US009124568B2

a2z United States Patent (10) Patent No.: US 9,124,568 B2
Olson et al. (45) Date of Patent: Sep. 1, 2015
(54) DEVICE AND METHOD FOR ASSET 8,219,635 B2 7/2012 Ganesan et al.
PROTECTION SCHEME 8,224,705 B2 7/2012 Moskowitz
2007/0079352 Al 4/2007 Klein, Jr.
H Y : 2007/0106810 Al 5/2007 Ryman
(71) Applicant: %;ney Enterprises, Inc., Burbank, CA 2007/0204078 Al 82007 Boccon-Gibod et al.
Us) 2008/0119953 Al 5/2008 Reed et al.
2008/0172718 Al 7/2008 Bradley
(72) Inventors: Peter Olson, Burbank, CA (US); Paul 2008/0256254 Al* 10/2008 Kimetal. ooooovvvvvvvoooo.. 709/231
Degnan, Burbank, CA (US) 2008/0282298 Al 11/2008 Ganesan et al.
2011/0246616 Al 10/2011 Roncaet al.
(73) Assignee: DISNEY ENTERPRISES, INC., 2012/0254370 Al* 10/2012 Bacheretal. 709/219
Burbank, CA (US) 2012/0284802 Al 11/2012 Hierro et al.
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 98 days. Xiao Zhang,“A Survey of Digital Rights Management Technologies”,
Nov. 28, 2011 http://www.cse.wustl.edu/~jain/cse571-11/ftp/drm/
(21) Appl. No.: 13/834,615 index.html, , 10 pps.
(22) Filed: Mar. 15,2013 * cited by examiner
(65) Prior Publication Data
US 2014/0283134 A1 Sep. 18, 2014 Primary Examiner — Ghazal Shehni
(74) Attorney, Agent, or Firm — Fay Kaplun & Marcin, LLP
(51) Imt.ClL
GO6F 21/00 (2013.01)
HO4L 29/06 (2006.01) 67 ABSTRACT
GO6F 21/10 (2013.01)
(52) U.S.CL A device and method for an asset protection scheme includes
CPC oo HO4L 63/08 (2013.01); GO6F 21/19 receiving, by a data chunk serving server, a first request for an
(2013.01); HO4L 63/062 (2013.01); GO6F asset from a client device; transmitting, by the data chunk
2221/0784 (2013.01) serving server, a plurality of data chunks to the client device,
(58) Field of Classification Search each of the data chunks corresponding to a portion of the
USPC oo 726/27-30 asset; receiving, by a key serving server, a second request for
See application file for complete search history. key data from the client device, the key data corresponding to
data removed from the asset to create the plurality of data
(56) References Cited chunks, wherein the plurality of data chunks and the key data

U.S. PATENT DOCUMENTS

6/2009 Redlichetal. 709/201
4/2011 Morioka
5/2012 Redlich et al.

7,546,334 B2 *
7,929,560 B2
8,176,563 B2

Request Asset

230

correspond to an entirety of the asset; and transmitting, by the
key serving server, the key data to the client device.

23 Claims, 4 Drawing Sheets

System 200
Ve

Transmit Key
235

U.S. Patent Sep. 1, 2015 Sheet 1 of 4 US 9,124,568 B2

Assel

100 \

Encoded .
Asset 100" \\

Key Key Key
Chunk 110 Chunk 110 chunk 110 Chunk
105 105 105 105
Fig. 1B

Encoded
Asset 100 \\

Chunks
105

Keys
110

Fig. 1C

U.S. Patent Sep. 1, 2015 Sheet 2 of 4 US 9,124,568 B2

System 200
i

/

205 210 215

Request Asset
220

v

Server

Transmit Chunks
205 225 210 215

Request Key -
230
-
Client
Transmit Key
205 235

Client

Fig. 2

U.S. Patent

Sep. 1, 2015

Start

Sheet 3 of 4

Receive Asset

l

Encode Asset

'

NO

Determine Key for
Encoded Asset

umber of Chunks
Acceptable?

Extract Key(s) from
Encoded Asset

'

Store Chunk(s) and
Key(s)

End

Fig. 3

305

310

315

320

325

330

US 9,124,568 B2

Method
300

/

U.S. Patent

Sep. 1, 2015

Sheet 4 of 4

Receive Request
for Asset

'

Determine Chunks
for Asset

'

Transmit Chunks

l

Receive Request
for Key

l

Determine
Corresponding Key

'

Transmit Key

End

Fig. 4

405

410

415

420

425

430

US 9,124,568 B2

Method
400
/

s

US 9,124,568 B2

1

DEVICE AND METHOD FOR ASSET
PROTECTION SCHEME

BACKGROUND INFORMATION

A web application works via a client-server interaction in
which assets such as static images, video, or other files are
stored on a remote database and delivered to the client (e.g., a
web browser) over a network via progressive download using
Hypertext Transfer Protocol (HTTP). Accordingly, the asset
is provided to the user on a one-time basis upon request. A
conventional web application utilizes known techniques by
which assets are secured on the remote server to prevent
unauthorized access and download. For example, the assets
may be encrypted such that the asset is required to be
decrypted for the web application to access the asset. There
are also complementary methods for preventing access to the
asset within the web client. For example, the web application
may include an authentication of the user for the asset to be
accessed. However, there are instances when even authorized
users for a particular asset have abused the authorization and
intercepted the asset during the download process.

Conventional Digital Rights Management (DRM) systems
have been employed to protect high-value assets, but these
systems often require additional costs or performance over-
heads that make them undesirable to deploy on lighter-weight
web applications. As a consequence, when applied to light-
weight web applications, a slow and relatively unresponsive
functionality results. The encryption process for the asset
may require excessive processing power which in turn also
adds excessive overhead to the process. Thus, the server-side
is forced to provide these services and absorb the costs/over-
heads. The client-side may also be required to include a
corresponding system to decrypt the encoded asset. Thus, the
client-side may require additional time to properly receive the
asset, thereby reducing an efficiency of the asset receiving
process. In addition, the conventional DRM systems are often
not compatible with common web application programming
libraries which often require further investment in engineer-
ing resources and degradation of user experience. Further-
more, the conventional DRM systems can involve costly
licensing or other fees which add to the total cost of delivering
the assets.

Accordingly, there is a need for a simple asset protection
method for light weight implementations which is integrated
with common client/server web applications using common
web programming languages (e.g., JavaScript), is minimally
impactful on the consumer experience of web applications
including the memory and processing overhead and respon-
siveness of the user-facing components of the applications,
does not require expensive licensing, and protects against
asset interception during HTTP delivery.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS.1A-C show an asset being separated into chunks and
keys according to the exemplary embodiments.

FIG. 2 shows a system for delivering an asset according to
the exemplary embodiments.

FIG. 3 shows a method for generating the chunks and keys
for an asset according to the exemplary embodiments.

FIG. 4 shows a method for delivering an asset according to
the exemplary embodiments.

DETAILED DESCRIPTION

The present invention relates to a device and method for an
asset protection scheme. The method comprises receiving, by

10

15

20

25

30

35

40

45

50

55

60

65

2

a data chunk serving server, a first request for an asset from a
client device; transmitting, by the data chunk serving server,
aplurality of data chunks to the client device, each of the data
chunks corresponding to a portion of the asset; receiving, by
a key serving server, a second request for key data from the
client device, the key data corresponding to data removed
from the asset to create the plurality of data chunks, wherein
the plurality of data chunks and the key data correspond to an
entirety of the asset; and transmitting, by the key serving
server, the key data to the client device.

The exemplary embodiments may be further understood
with reference to the following description of the exemplary
embodiments and the related appended drawings, wherein
like elements are provided with the same reference numerals.
The exemplary embodiments are related to a device and
method for delivering an asset from a server to a client using
an asset protection scheme performed on the server-side.
Specifically, the asset is separated by the server into chunks
and keys such that the client transmits a first request for the
asset to receive the chunks and transmits a second request for
the key to receive the keys, thereby being able to reassemble
the asset from having both the chunks and the keys. The
server, the client, the asset, the asset protection scheme, the
chunks, the keys, a related method for separating the assets
into chunks and keys and a related method for delivering the
asset will be explained in further detail below.

FIGS. 1A-C show an asset 100 being separated into chunks
105 and keys 110 according to the exemplary embodiments.
FIG. 1A illustrates a constructive format for the asset 100
prior to being encoded and separated. The asset 100 may be
any data that is transmitted via a client-server application
from a remote database or other storage mechanism associ-
ated with the server to the client. For example, the asset 100
may be static image data, a video stream, etc. Accordingly, the
asset 100 may be in a corresponding format. That is, the
constructive format shown in FIG. 1A may be the format for
the asset 100. The asset 100 may be stored in the remote
database associated with the server until a request is received
for a transmission thereof. It should be noted that the use of
the remote database is only exemplary. The asset 100 may be
stored in any storage arrangement. For example, the asset 100
may be stored in the remote database, a local database, a file
system such as a local storage context of a browser or appli-
cation, etc. Those skilled in the art will understand that the
remote database used herein is representative of any type of
storage arrangement.

It should be noted that the exemplary embodiments being
utilized for the above described static image data is only
exemplary. As described herein, the entire asset 100 may be
received prior to displaying an image to the user. However,
the asset 100 may also be received in a streaming manner.
That is, a portion of the asset 100 may be received and
assembled (as will be described below) prior to the entire
asset 100 being received. Each ofthe portions of the asset 100
may be received and assembled until all the portions are
received for the entire asset 100 to be assembled. It should
also be noted that when the portions of the asset 100 are
received and assembled, each portion may also be displayed
in the streaming manner. Those skilled in the art will under-
stand that the manner in which the asset 100 is transmitted
may also be utilized in this streaming functionality.

FIG. 1B illustrates the asset 100 as an encoded asset 100'.
The asset 100 has been translated as the encoded asset 100
using any known data-encoding format. For example, the
data-encoding format may be Base64. For illustrative pur-
poses, a simplified data-encoding format that may be used is
to encode each pixel of the asset 100 that is static image data.

US 9,124,568 B2

3

The asset 100 may be translated as the static image data using
a variety of manners. In a first example, an image may be
scanned and stored as the static image data. In another
example, an image may be constructed using an image appli-
cation and stored as the static image data. Accordingly, the
static image data may include a plurality of pixels. Each pixel
may represent a color or shade in which a corresponding
string of letters or numbers may be used to represent the color
or shade. Therefore, the asset 100 may be translated into the
encoded asset 100" as a combined string for every pixel of the
static image data. However, it should be noted that any data-
encoding format may be used to translate the asset 100 into
the encoded asset 100'. The encoded asset 100' may also be
stored in the remote database associated with the server.

FIG. 1B also illustrates the encoded asset 100" separated
into the chunks 105 and the keys 110. The server may deter-
mine the key 110 to be used for the separation of the encoded
asset 100'. In the above described exemplary embodiment of
a combined string, the server may determine a particular
string of letters/numbers to represent the key 110. That is, the
exemplary key 110 is a string of letters/numbers that are
already present within the encoded asset 100'. For example,
the key 110 may consist of a number of randomly selected
characters within the encoding character space of the string of
the encoded asset 100'. The randomly selected characters may
also be consecutive characters. The server may determine the
key 110 using a variety of factors. In a preferred exemplary
embodiment, the server determines the key 110 as a function
of the number of chunks 105 that will be generated. That is,
the number of chunks 105 must satisfy a predetermined range
such as more than two (2) but fewer than one hundred (100).
For example, the server may determine the key 110 if the
number of chunks 105 that are created is eight (8). It should be
noted that the predetermined range of the number of chunks
105 may be determined as a function of predetermined crite-
ria such as size of the asset. For example, an assetthat is 1 MB
in size may optimally have eight (8) chunks; an asset that is
300 kB in size may optimally have four (4) chunks; etc. As
shown in FIG. 1B, the key 110 has been determined and is
shown to be present in three (3) instances along the encoded
asset 100'. Accordingly, the encoded asset 100' may include
four (4) chunks 105. Thus, when the keys 110 are located
within the encoded asset 100" and not at an end thereof, there
may be n number of keys 110 and n+1 number of chunks 105.
However, it should be noted that when one of the keys 110 are
located at only one of the ends of the string of the encoded
asset 100", there may be n number of keys 110 and n number
of chunks 105, while when two of the keys 110 are each
located at both ends of the string of the encoded asset 100",
there may be n number ofkeys 110 and n—-1 number of chunks
105. Thus, the encoded asset 100' may be split into a variable
number of chunks 105 at any point where the key 110 occurs
of which instances of the key 110 are removed from the
chunks 105.

It should be noted that the encoded asset 100" may include
various permutations in which further possible number of
keys 110 and chunks 105 are generated. In the example above
where the keys 110 are all disposed between chunks 105, the
order of the chunks 105 and the keys 110 may be chunk
105-key 110-chunk 105- . . . -key 110-chunk 105. The other
examples above in which the keys 110 may be located prior to
the first chunk or after the last chunk include a substantially
similar pattern in which the chunks 105 and the keys 110
alternate. However, in a further example, the asset 100 may be
translated into the encoded asset 100" such that two or more
keys 110 exist consecutively. Accordingly, the order of the
chunks 105 and the keys 110 may be . . . key 110-key 110-

10

15

20

25

30

35

40

45

50

55

60

65

4

chunk 105-key 110-chunk 105 . . . ; . . . chunk 105-key
110-key 110-key 110-chunk 105 . . . ; etc. Those skilled in the
art will understand that the exemplary embodiments encom-
pass each and every permutation from which the chunks 105
and the keys 110 are generated as a function of the encoded
asset 100'.

FIG. 1C illustrates the chunks 105 and the keys 110 sepa-
rated from each other from the encoded asset 100'. As illus-
trated, the encoded asset 100' has been separated into four (4)
chunks 105 and three (3) keys 110. The chunks 105 and the
keys 110 may be stored in the remote database associated
with the server. However, it should be noted that in some
embodiments, only a single instance of the key 110 is stored
since the key 110 may be disposed at various locations along
the string of the encoded asset 100", but comprises the same
content at each occurrence. According to a preferred exem-
plary embodiment, the chunks 105 are stored separately from
the key 110.

FIG. 2 shows a system 200 for delivering the asset 100
according to the exemplary embodiments. The system 200
may include a client 205, a server 210, and a database 215. As
discussed above, the system 200 relates to a client-server
interaction in which the asset 100 is transmitted via an appli-
cation executed on the client 205. Accordingly, the client 205
may be any electronic device configured to execute the client-
server application. For example, the client 205 may be a
stationary computer terminal, a mobile unit (e.g., a laptop, a
smartphone, a tablet computer, etc.), etc. The client 205 and
the server 210 may also be configured to communicate with
one another via a network (not shown). Accordingly, the
client 205 and the server 210 may include a transmitter, a
receiver, a transceivet, etc. The network may be in any con-
figuration. Thus, the client 205 and the server 210 may be
configured to communicate via the network as a function of
the protocol used therein. For example, if the network is a
wireless network, both the client 205 and the server 210 may
include a wireless transceiver. In another example, the client
205 and the server 210 may be hardwired to respective jacks
that connect these components to the network.

Initially, a user of the client 205 may execute the client-
server application thereon. Specifically, a processor of the
client 205 may execute the client-server application which is
stored in a memory arrangement thereof. The application may
be used to request assets from the server 210/database 215.
The application may be configured with an authentication
feature. The user may be required to be an authorized user to
request the assets. Thus, the authentication feature may
request the user to provide access inputs such as a user login
and associated password. The access inputs may be transmit-
ted to the server 210 which stores the access inputs of a
plurality of users in the database 215. If the access inputs are
correct, the server 210 may indicate to the application that the
user is authorized for the connection between the client 205
and the server 210 to be established. The connection between
the client 205 and the server 210 may be established in per-
petuity, for a single session, for a predetermined period of
time, etc.

The user may select an asset 100 via the application that is
available for transmission. For example, the application may
provide a menu or graphical user interface from which the
user may select the desired asset 100 using an input device
(e.g., keyboard, mouse, touchscreen, etc.). Accordingly, the
client 205 may transmit a request 220 for the asset 100 via the
application. The server 210 may receive the request 220 for
the asset 100. Accordingto a first exemplary embodiment, the
server 210 may have generated chunks 105 and keys 110 for
each of the assets that are stored prior to receiving the request

US 9,124,568 B2

5

220. Thus, the server 210 may determine the corresponding
chunks 105 for the encoded asset 100" that represents the asset
100 that is requested. According to a second exemplary
embodiment, the server 210 may determine the asset 100 that
is requested and perform the above described manner of
generating the chunks 105 and keys 110 with regard to FIG. 1
in an ad hoc manner. That is, the asset 100 is separated upon
receiving the request. Upon receiving the request 220 for the
asset 100, the server 210 may transmit 225 the chunks 105 of
the asset 100 from the database 215.

Upon receiving the chunks 105, the client 205 may subse-
quently transmit a request 230 for the key 110 associated with
the asset 100 that is requested. The server 210 may receive the
request 230 for the key 110. The server 210 may transmit 235
the key 110 of the asset 100 from the database 215. Upon
receiving the key 110, the application of the client 205 may
reassemble the encoded asset 100" from the chunks 105 and
the key 110 to generate the entire combined string represent-
ing the encoded asset 100'. The application may decode the
encoded asset 100" to generate the asset 100.

It should be noted that the client-server application may be
configured such that the asset 100 may be accessed only upon
the entire data thereof being present. That is, the application
may only be able to generate viewable data when the entire
contents ofthe asset 100 are received. As discussed above, the
asset 100 is translated as the encoded asset 100'. The chunks
105 and the key 110 relate to the encoded asset 100'. In the
above described example, the encoded asset 100" may simply
be a string of characters. The application may be incapable of
creating the image, video, etc. from the encoded asset 100
until the entire data is received which includes both the
chunks 105 and the key 110. For example, if only the chunks
105 are received, the application is unable to generate the
asset 100 since there are missing strings from the entire com-
bined string. When the application reassembles the chunks
105 with the keys 110 placed in the appropriate locations
within the string, the application has the entire combined
string and is capable of decoding the string to create the asset
100.

It should also be noted that the system 200 including a
single server 210 and a single database 215 is only exemplary.
According to another exemplary embodiment, there may be a
first server configured to receive a request for the asset and
transmit the chunks 105 and a second server configured to
receive a request for the key and transmit the key 110. In a
substantially similar manner, the first server may have access
to a first remote database storing the chunks 105 while the
second server may have access to a second remote database
storing the key 110. As discussed above, there may be an
authentication process for the application. That is, the user
initially provides access inputs (e.g., login and password) to
the first server to indicate that the user is authorized. The first
server may thus be aware that the client 205 that is requesting
the asset is allowed to transmit such a request and receive the
chunks 105. However, even after receiving the chunks 105,
the second server may still require the access inputs to be
received to further verify that the user is still authorized to
receive the key 110. This process may be performed auto-
matically via the application or may be performed manually
such that the user is again required to provide the access
inputs. Once the second server also verifies the user is autho-
rized, the key 110 may be sent for the requested asset.

It should further be noted that the chunks 105 and the key
110 may be stored in a variety of different manners. In a first
example, to reduce processing requirements and also provide
reduced loading profiles, the chunks 105 and the key 110 may
be generated when the asset 100 is received by the server 210.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Thereafter, the chunks 105 and the key 110 may be stored on
a long term basis for every time the asset 100 is requested. In
a second example, the chunks 105 and the key 110 may be
generated and stored for a predetermined amount of time. For
example, the chunks 105 and the key 110 for a particular asset
100 may be stored for one user in perpetuity, one day, several
days, a week, several weeks, etc. Thus, when the asset 100 is
requested, the chunks 105 and the key 110 is stored and ready
for retrieval from the database 210. However, upon the time
lapsing, the server 210 may generate and store a different set
of chunks 105 and key 110 for the same asset 100. In a third
example, the chunks 105 and the key 110 may be generated
and stored temporarily for a particular session with the user.
This relates to the server 210 creating the chunks 105 and key
110 in a dynamic manner. Thus, the chunks 105 and the key
110 are stored only for the time required for the asset 100 to
be transmitted from the server 210 to the client 205.

FIG. 3 shows a method 300 for generating the chunks 105
and keys 110 for the asset 100 according to the exemplary
embodiments. The method 300 will be described with refer-
ence to the asset 100 and the encoded asset 100" of FIG. 1 and
the server 210 and the database 215 of FIG. 2. It should be
noted that the method 300 may be performed at a variety of
different times. In a first example, the method 300 may be
performed upon receiving an asset. In another example, the
method 300 may be performed upon receiving a request for an
asset. In yet another example, the method 300 may be per-
formed upon receiving a plurality of assets associated with a
set. The method 300 will be described below with regard to
the first example. The method 300 will also be described
below with regard to creating the chunks 105 and the keys 110
prior to the request for the asset 100 being received.

In step 305, the server 210 may receive the asset 100. As
described above, the asset 100 may be received as data in a
variety of different manners. In step 310, the server 210
encodes the asset 100. That is, the asset 100 is translated to
generate the encoded asset 100'. As discussed above, the asset
100 may be translated into the encoded asset 100' using a
variety of different manners and protocols. Thus, the asset
100 shown in FIG. 1A is translated into the encoded asset 100’
as shown in FIG. 1B.

Instep 315, the server 210 determines a first test key 110 for
the encoded asset 100" as shown in FIG. 1B. As discussed
above, the encoded asset 100' may be a string of characters.
The key 110 may be a selected, consecutive set of characters
within the combined string of the encoded asset 100'. In a
preferred exemplary embodiment, the key 110 is present in at
least a plurality of locations within the combined string of the
encoded asset 100'. It should be noted that according to an
exemplary embodiment, an initial selection of the key 110
may be selected by the server 210 in a pseudo-random man-
ner. Specifically, the server 210 may include predetermined
criteria to select the key 110. For example, a criterion that may
be used is a number of characters. The server 210 may deter-
mine the key 110 having a predetermined number of charac-
ters that are consecutive within the encoded asset 100'. In
another example, a criterion that may be used is a number of
times the key 110 appears in the encoded asset 100'. In yet
another example, a combination of the above noted criteria
may be used.

In step 320, the server 210 determines whether the result-
ing chunks 105 created from selecting the key 110 is accept-
able. For example, if the combined string of the encoded asset
100" is relatively short, the key 110 that is selected may
encompass the entire combined string. In such a scenario, the
entire combined string becomes the key 110 and no chunks
105 are created. Therefore, if the number of resulting chunks

US 9,124,568 B2

7

105 is unacceptable, the method 300 returns to step 315 to
determine another key 110 for the encoded asset 100'.
Whether a key 110 is unacceptable may also have a predeter-
mined number of criteria which may be substantially similar
to the criteria for selecting the key 110. For example, the
server 210 may determine that the key 110 is unacceptable if
the resulting number of chunks 105 is too few or too many.
This range of chunks 105 may be set by predetermined thresh-
olds (e.g., minimum/maximum) as a function of further cri-
teria such as the size of the asset 100. In another example, the
server 210 may determine that the key 110 is unacceptable if
the number of characters of the key 110 is below a minimum
predetermined threshold number or exceeds a maximum pre-
determined threshold number.

The selection of a new test key 110 may utilize the above
noted criteria. Thus, in an iteration of the determination of the
key 110, the server 210 may again utilize the criterion for a
number of characters. In a first example, the server 210 may
use the same number of characters but select a different set of
characters. In a second example, the server 210 may select a
different number of characters. The server 210 may also
utilize the criterion for the number of chunks 110. In a pre-
ferred exemplary embodiment, the number of resulting
chunks 105 from the selection of the key 110 is eight (8) (e.g.,
when the asset is about 1 MB in size). When the method 300
returns to step 315, the server 210 may utilize results of a first
attempt or multiple attempts to determine a proper selection
of the key 110. For example, if multiple iterations for the
selection of a key 110 have already been made based upon the
criterion of using a single, predetermined number of charac-
ters of the key 110, the server 210 may determine that the
number of characters of the key 110 must change. Thus, the
server 210 may use a different number of characters to select
the key 110 for the remainder of the method 300.

If the resulting number of chunks 105 is acceptable, the
method 300 continues to step 325. In step 325, the server 210
extracts the keys 110 from the encoded asset 100'. Thus, the
encoded asset 100' is separated into a plurality of chunks 105
and a plurality of keys 110 as shown in FIG. 1C. Accordingly,
in step 330, the chunks 105 and the key 110 are stored in the
database 215. As discussed above, a single instance of the key
110 is stored as the key 110 is the same at each occurrence
within the encoded asset 100'.

It should be noted that the server 210 may further be con-
figured to selectively utilize the key 110 in generating the
chunks 105. For example, the server 210 may determine that
an optimal number of chunks 105 for a particular asset is eight
(8). However, the selected test key 110 generates sixteen (16)
chunks 105. If the server 210 determines that the location of
the key 110 within the encoded asset 100" allows for only half
the keys 110 to be utilized, the server 210 may still select the
key 110 as determined. Thus, eight (8) chunks 105 may still
result from the selective use of the chosen key 110. In another
example, the server 210 may utilize the key 110 such that only
a portion of the encoded asset 100' generates the key/chunk
disassembly. That is, a remainder of the encoded asset 100'
may comprise a single chunk in which instances of the key
110 are not removed. In this manner, a select number of
chunks 105 may still be generated.

It should also be noted that the use of a statickey 110 is only
exemplary. The exemplary embodiments may utilize a variety
of schemes to generate or utilize the key 110. As described
above, the key 110 may be static in which the key 110 is a
common sequence of characters that are present within the
encoded asset 100'". In another example, the server 210 and the
client 205 may be configured to utilize a programmatic
sequence of keys. That is, the server 210 may generate a first

25

30

40

45

8

key 110 (e.g., “ab”) and the programmatic sequence may
determine subsequent keys for the encoded asset 100' (e.g.,
“cd,” “ef,” etc.). In this manner, the encoded asset 100' may be
separated into chunks 105 and keys 110. Since the server 210
and the client 205 are both configured with the programmatic
sequence, the server 210 need only transmit the first key (e.g.,
“ab”) such that the client 205 is able to generate the subse-
quent keys.

FIG. 4 shows a method 400 for delivering the asset 100
according to the exemplary embodiments. The method 400
will be described with reference to the asset 100 and the
encoded asset 100" of FIG. 1 and the system 200 of FIG. 2.
The method 400 will be described below with regard to the
chunks 105 and the keys 110 being created prior to the request
for the asset 100 being received. The method 400 will also be
described below in which the user of the client 205 has
already been authorized. The method 400 will further be
described below with regard to the server 210.

In step 405, the server 210 receives the request 220 for the
asset 100 from the client 205. As discussed above, the user
may select the asset 100 from the client-server application
which in turn generates the request 220 for transmission to the
server 210. In step 410, the server 210 determines the corre-
sponding chunks 105 for the asset 100. Specifically, the
chunks 105 correspond to the encoded asset 100' representing
the asset 100 that has already been translated. Subsequently,
in step 415, the server 210 transmits 225 the chunks 105 to the
client 205.

In step 420, the server 210 receives the request 230 for the
key 110 from the client 205. As discussed above, the appli-
cation is only capable of generating the asset 100 from the
encoded asset 100' upon receiving all the chunks 105 and the
key 110. Thus, the application generates the request 230 for
transmission to the server 210. In step 425, the server 210
determines the corresponding key 110 for the asset 100. Spe-
cifically, the key 110 corresponds to the encoded asset 100"
representing the asset 100. Subsequently, in step 430, the
server 210 transmits 235 the key 110 to the client 205.

Accordingly, upon receiving the chunks 105 in step 415
and the key 110 in step 430, the application is able to reas-
semble the entire combined string of the encoded asset 100".
The application is then able to decode the entire combined
string of the encoded asset 100' to generate the asset 100. It
should be noted that the decoding of the encoded asset 100’
may be performed using any known method such as executing
JavaScript commands within a browser application. It should
also be noted that the reassembly of the encoded asset 100"
from the chunks 105 and the key 110 may also be performed
using any known method.

It should be noted that the method 400 may include addi-
tional steps. For example, the method 400 may incorporate an
authentication step at various points along the method 400. In
afirstexample, the method 400 may include an authentication
step upon receiving the request for the asset (step 405). The
server 210 may determine whether the request was received
from an authorized user. If authorized, the method 400 may
continue to the following step. In a second example, the
method 400 may include an authentication step or a further
authentication step upon receiving the request for the key
(step 420).

As discussed above, the manner in which the asset is sepa-
rated into chunks and keys may be performed at different
times. According to a first exemplary embodiment, the
method 300 may be performed prior to the delivery of the
asset as performed in the method 400. That is, the method 300
is initially performed such that the asset is separated into the
chunks and keys and stored. According to a second exemplary

US 9,124,568 B2

9

embodiment, the method 400 may incorporate the method
300 when the asset is separated dynamically or in an ad hoc
manner. Specifically, the method 300 may be performed upon
receiving the request for the asset (step 405). Upon perform-
ing the method 300 at this time, the method 400 may continue
to step 415 as the chunks are already determined (step 410).

The exemplary embodiments provide a system and method
for an asset protection scheme. An asset may be translated
into an encoded asset that includes a plurality of characters as
a string. A server of the system may determine a key for the
encoded asset such that a plurality of chunks are created when
the key is extracted from the string at each occurrence. When
a client requests the asset, the server may initially transmit
only the chunks to the client. The client may subsequently
request the key such that the server transmits the key to the
client. Upon receiving the key and the chunks, an application
of the client may reassemble the encoded asset for decoding
to access the asset.

Since data is removed from the encoded asset in the form of
keys at the time of delivery, the risk of intellectual property
loss through interception as the asset is transmitted to the
client is reduced. The above described method of generating
the chunks and key and the manner in which the asset is
eventually transmitted will deter user attempts of bulk-down-
loading and distributing sensitive assets. The exemplary
embodiments allow for an integration with common client/
server web applications using common web programming
languages, provide a lightweight experience with respect to
consumer expectations and common load profiles of web
applications, eliminates any expensive licensing agreements
associated with complex encryption applications, and pro-
tects again asset interception during HTTP delivery.

Those skilled in the art will understand that the above-
described exemplary embodiments may be implemented in
any suitable software or hardware configuration or combina-
tion thereof. An exemplary hardware platform for implement-
ing the exemplary embodiments may include, for example, an
Intel x86 based platform with compatible operating system, a
Mac platform and MAC OS, etc. In a further example, the
exemplary embodiments of the delivery operation by the
server may be embodied as a program containing lines of
code stored on a non-transitory computer readable storage
medium that, when compiled, may be executed on a proces-
sor.

It will be apparent to those skilled in the art that various
modifications may be made in the present invention, without
departing from the spirit or the scope of the invention. Thus,
it is intended that the present invention cover modifications
and variations of'this invention provided they come within the
scope of the appended claims and their equivalent.

What is claimed is:

1. A method, comprising:

receiving, by a data chunk serving server, a first request for

an asset from a client device;

transmitting, by the data chunk serving server, a plurality

of data chunks to the client device, each of the data
chunks containing the corresponding content of a por-
tion of the asset;

receiving, by a key serving server, a second request for key

data from the client device, the key data containing the
corresponding content of data removed during data
removal from the asset to create the plurality of data
chunks, wherein a combination of the plurality of data
chunks and the key data contains a corresponding
entirety of the contents of the asset; and

transmitting, by the key serving server, the key data to the

client device.

10

15

20

25

30

35

40

45

50

55

60

65

10

2. The method of claim 1, further comprising:
prior to receiving the first request,
translating, by the data chunk serving server, the asset into
encoded asset data;
determining, by the data chunk serving server, the key data
from the encoded asset data; and
extracting, by the data chunk serving server, instances of
the key data from the encoded asset data to create the
plurality of data chunks.
3. The method of claim 2, further comprising:
storing, in a remote database, the plurality of data chunks
and the key data.
4. The method of claim 2, further comprising:
determining, by the data chunk serving server, whether a
number of the plurality of data chunks is within a pre-
determined range.
5. The method of claim 2, further comprising:
prior to determining the key data, selecting, by the data
chunk serving server, a firstkey data as a function at least
one of a number of characters, a number of the instances
of the key data within the encoded asset data, and a
number of the plurality of data chunks.
6. The method of claim 5, further comprising:
determining whether the first key data is at least one of (a)
one of less than and more than a predetermined range of
the number of characters, (b) one of less than and more
than a predetermined range of the number of instances,
and (c) one of less than and more than the number of the
plurality of data chunks; and
selecting, by the data chunk serving server, a second key
data if at least one of (a), (b), and (c) is not satisfied.
7. The method of claim 2, wherein the instances of the key
data are extracted selectively.
8. The method of claim 1, further comprising:
authenticating, by the data chunk serving server, the client
device upon receiving the first request; and
authenticating, by the key serving server, the client device
upon receiving the second request.
9. The method of claim 1, wherein the data chunk serving
server and the key serving server comprise the same server.
10. The method of claim 1, wherein the key data is a
programmatic sequence of keys.
11. A method, comprising:
transmitting, by a client device, a first request for an asset;
receiving, by the client device, a plurality of data chunks,
each of the data chunks containing the corresponding
content of a portion of the asset;
transmitting, by the client device, a second request for key
data, the key data containing the corresponding content
of at least one further portion of the asset, wherein a
combination of the plurality of data chunks and the key
data contains a corresponding entirety of the contents of
the asset;
receiving, by the client device, the key data; and
assembling, by the client device, the asset as a function of
the key data and the plurality of data chunks.
12. The method of claim 11, further comprising:
creating, by the client device, an encoded asset data by
inserting the key data within the plurality of data chunks;
and
translating, by the client device, the encoded asset data into
the asset.
13. The method of claim 12, further comprising:
prior to transmitting the first request, receiving a selection
corresponding to the asset.

US 9,124,568 B2

11

14. The method of claim 11, further comprising:

transmitting, by the client device, authentication data to the
server.

15. A device, comprising:

a receiver configured to receive a first request for an asset
from a client device, the receiver further configured to
receive a second request for key data from the client
device; and

a transmitter configured to transmit a plurality of data
chunks to the client device, each of the data chunks
containing the corresponding content of a portion of the
asset, the key data containing the corresponding content
of data removed during data removal from the asset to
create the plurality of data chunks, wherein a combina-
tion of the plurality of data chunks and the key data
contains a corresponding entirety of the contents of the
asset, the transmitter further configured to transmit the
key data to the client device.

16. The device of claim 15, further comprising:

a processor configured to translate the asset into encoded
asset data, determine the key data from the encoded asset
data, and extract instances of the key data from the
encoded asset data to generate the plurality of data
chunks.

17. The device of claim 16, further comprising:

amemory arrangement configured to store the plurality of
data chunks and the key data.

18. The device of claim 16, wherein the processor is con-

figured to determine whether a number of the plurality of data
chunks is within a predetermined range.

20

12

19. The device of claim 15, wherein the receiver is config-
ured to receive authentication data upon receiving at least one
of the first request and the second request.

20. A device, comprising:

a transmitter configured to transmit a first request for an
asset, the transmitter further configured to transmit a
second request for key data, the key data containing the
corresponding content of at least one corresponding por-
tion of the asset;

a receiver configured to receive a plurality of data chunks,
each of the data chunks containing the corresponding
content of a further portion of the asset, the receiver
further configured to receive the key data, wherein a
combination of the plurality of data chunks and the key
data contains a corresponding entirety of the contents of
the asset; and

a processor configured to assemble the asset as a function
of the key data and the plurality of data chunks.

21. The device of claim 20, wherein the processor is con-
figured to create an encoded asset data by inserting the key
data within the plurality of data chunks and translate the
encoded asset data into the asset.

22. The device of claim 20, wherein the processor is con-
figured to receive a selection corresponding to the asset.

23. The device of claim 20, wherein the transmitter is
configured to transmit authentication data to the server.

#* #* #* #* #*

